Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-(2-Carboxyphenyl)benzoato]bis(1,10phenanthroline)zinc(II) 2-(2-carboxyphenyl)benzoate monohydrate

Wei-Wei Huang and Shi-Ping Yang*

School of Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China Correspondence e-mail: shipingy@shnu.edu.cn

Received 29 January 2008; accepted 3 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.064; wR factor = 0.145; data-to-parameter ratio = 15.6.

In the title compound, $[Zn(C_{14}H_9O_4)(C_{12}H_8N_2)_2](C_{14}H_9O_4)$. H₂O, the Zn^{II} atom of the complex cation is six-coordinated in an octahedral geometry by four N atoms from two 1,10phenanthroline ligands and two O atoms of a carboxylate group from a singly deprotonated diphenic acid. The phenanthroline and carboxylate ligands act as chelating ligands. The dihedral angles between the two benzene rings in the deprotonated diphenic acid groups are 81.05 (2) (ligand) and 89.10 (2)° (anion). $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the components into a three-dimensional network.

Related literature

For related structures containing the diphenic acid anion, see: Wan & Zhang (2003); Vodak et al. (2001); Chui et al. (2001); Fernandes et al. (2001); Trombe et al. (2002); Xu et al. (2003); Nie et al. (2001); Sun et al. (2001).

Experimental

Crystal data $[Zn(C_{14}H_9O_4)(C_{12}H_8N_2)_2]$ - $(C_{14}H_9O_4) \cdot H_2O$ $M_r = 926.24$ Triclinic, $P\overline{1}$ a = 10.8208 (11) Åb = 13.7475 (14) Å c = 14.9231 (16) Å $\alpha = 77.824 \ (2)^{\circ}$

```
\beta = 77.294 \ (2)^{\circ}
\gamma = 85.052 \ (2)^{\circ}
V = 2115.0 (4) Å^3
Z = 2
Mo K\alpha radiation
\mu = 0.65 \text{ mm}^{-1}
T = 298 (2) K
0.46 \times 0.28 \times 0.07 \ \mathrm{mm}
```

 $R_{\rm int} = 0.103$

13020 measured reflections

9403 independent reflections

4505 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.800, T_{\max} = 0.960$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$wR(F^2) = 0.144$	independent and constrained
S = 0.82	refinement
9403 reflections	$\Delta \rho_{\rm max} = 0.89 \text{ e } \text{\AA}^{-3}$
603 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Selected geometric parameters (Å, °).

Zn1-O2	2.078 (3)	Zn1-N3	2.145 (4)
Zn1-N1	2.128 (3)	Zn1-N2	2.145 (3)
Zn1-N4	2.130 (3)	Zn1-O1	2.334 (3)
O2-Zn1-N1	102.73 (12)	N4-Zn1-N2	167.99 (13)
O2-Zn1-N4	97.11 (12)	N3-Zn1-N2	90.84 (13)
N1-Zn1-N4	100.12 (12)	O2-Zn1-O1	59.17 (10)
O2-Zn1-N3	155.43 (11)	N1-Zn1-O1	155.22 (11)
N1-Zn1-N3	101.83 (13)	N4-Zn1-O1	98.98 (11)
N4-Zn1-N3	77.99 (14)	N3-Zn1-O1	97.46 (11)
O2-Zn1-N2	94.88 (12)	N2-Zn1-O1	86.71 (11)
N1-Zn1-N2	77.67 (12)		

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O9-H9B\cdots O7^{i}$	0.84 (4)	2.10 (5)	2.936 (6)	171 (6)
$O4-H4B\cdots O5^{ii}$	0.82	1.86	2.633 (5)	158
O9−H9A…O5	0.87 (5)	1.96 (6)	2.817 (6)	171 (7)
$O8-H8B\cdots O6$	0.82	1.69	2.500 (5)	171
C3-H3···O1	0.93	2.55	3.130 (5)	121
$C4-H4A\cdots O6^{ii}$	0.93	2.42	3.221 (5)	144
C12-H12···O9	0.93	2.42	3.273 (6)	152
$C16-H16\cdots O7^{i}$	0.93	2.43	3.199 (7)	139
C19−H19···O6 ⁱⁱⁱ	0.93	2.56	3.377 (5)	146
$C22-H22\cdots O1^{iv}$	0.93	2.43	3.249 (6)	147

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Science and Technology Foundation of Shanghai (grant No. 065212050) and the Foundation of Shanghai Higher Education (grant No. 07ZZ68).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2560).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chui, S. Y., Siu, A., Feng, X., Zhang, Z. Y., Mak, T. C. W. & Williams, I. D. (2001). Inorg. Chem. Commun. 4, 467-470.

Fernandes, A., Jaud, J., Dexpert-Ghys, J. & Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385-2391.

Nie, J. J., Liu, L. J., Luo, Y. & Xu, D. J. (2001). J. Coord. Chem. 53, 365-371. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Trombe, J. C. & Romero, S. (2002). Solid State Sci. 2, 279-283.
- Vodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M. & Yaghi, O. M. (2001). Chem. Commun. pp. 2534-2535.
- Wan, Y. H. & Zhang, L. P. (2003). *J. Mol. Struct.* **658**, 253–260. Xu, H. T., Zheng, N. W., Jin, X. L., Yang, R. Y., Wu, Y. G., Ye, E. Y. & Li, Z. Q. (2003). J. Mol. Struct. 655, 339-342.

Acta Cryst. (2008). E64, m525-m526 [doi:10.1107/S1600536808005862]

[2-(2-Carboxyphenyl)benzoato]bis(1,10-phenanthroline)zinc(II) 2-(2-carboxyphenyl)benzoate monohydrate

W.-W. Huang and S.-P. Yang

Comment

In all types of carboxylic acids, diphenic acid is widely used in the construction of coordination polymers due to their capability of acting as bridging and chelating ligand in various coordination modes (Wan & Zhang, 2003). Much interest has been paid to the preparation of metal aromatic carboxylates under hydrothermal conditions (Vodak *et al.*, 2001; Chui *et al.*, 2001; Nie *et al.*, 2001; Sun *et al.*, 2001; Fernandes *et al.*, 2001; Trombe *et al.* 2002; Xu *et al.* 2003). Recently, we have prepared the title compound and report here its crystal structure.

The asymmetric unit of the title compound consists of a $[Zn(C_{12}H_8N_2)_2(C_{14}H_9O_4)]^+$ complex cation, one singly deprotonated diphenic acid anion $(C_{14}H_9O_4^-)$ and one water molecule (Fig. 1). In the complex cation, the Zn^{II} atom is six-coordinated in an octahedral geometry by four N atoms from two 1,10-phenanthroline ligands and two O atoms of a carboxylate group from a diphenic acid, with Zn—N distances of 2.128 (3)–2.145 (4) Å and Zn—O distances of 2.078 (3) and 2.334 (3) Å. The N—Zn—N, N—Zn—O and O—Zn—O bond angles are in the ranges 77.99 (14)–167.99 (13)°, 86.71 (11)–155.23 (11)° and 59.17 (10)°, respectively (Table 1). The phenanthroline and diphenic acid act as chelating ligands (Table 1 and Fig.1). The dihedral angle between the two benzene rings in diphenic acid is *ca* 81.05 (2)° (cation) and 89.10 (2)° (anion).

Intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link complex cations, anions and water molecules to form a three-dimensional network (Fig. 2).

Experimental

A mixture of diphenic acid (0.0484 g, 0.2 mmol), phenanthroline (0.04 g, 0.2 mmol), $Zn(NO_3)_2 \cdot 6H_2O$ (0.1 mmol) and NaOH (0.012 g, 0.3 mmol) with a molar ratio of 2/2/1/3 in H₂O—CH₃CH₂OH (ν/ν 4/1) (15 ml) was sealed in a Teflon-lined stainless steel Parr bomb. The bomb was heated to 433 K for 72 h and then cooled to room temperature at 5 K h⁻¹. A large amount of yellow crystals formed, which were collected by filtration, washed with water, and dried in air.

Refinement

The water H atoms were located in a difference map and their positional parameters were refined with O—H distances restrained to 0.85 (3) Å. The remaining H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.2U_{eq}(O)$. The components of the displacement parameters in the direction of the C31—C32 bond were restrained to be equal.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound, viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

[2-(2-Carboxyphenyl)benzoato]bis(1,10-phenanthroline)zinc(II) 2-(2-carboxyphenyl)benzoate monohydrate

Crystal data

$[Zn(C_{14}H_9O_4)(C_{12}H_8N_2)_2](C_{14}H_9O_4)\cdot H_2O$	Z = 2
$M_r = 926.24$	$F_{000} = 956$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.454 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.8208 (11) Å	Cell parameters from 1630 reflections
b = 13.7475 (14) Å	$\theta = 4.8 - 40.2^{\circ}$
c = 14.9231 (16) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\alpha = 77.824 \ (2)^{\circ}$	T = 298 (2) K
$\beta = 77.294 \ (2)^{\circ}$	Block, yellow
$\gamma = 85.052 \ (2)^{\circ}$	$0.46 \times 0.28 \times 0.07 \text{ mm}$
$V = 2115.0 (4) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	9403 independent reflections
Radiation source: fine-focus sealed tube	4505 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.103$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$

Absorption correction: multi-scan (SADABS: Bruker, 1998)	$h = -11 \rightarrow 14$
$T_{\rm min} = 0.800, \ T_{\rm max} = 0.960$	$k = -17 \rightarrow 17$
13020 measured reflections	$l = -16 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.144$	$w = 1/[\sigma^2(F_o^2) + (0.0297P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.82	$(\Delta/\sigma)_{\text{max}} = 0.001$
9403 reflections	$\Delta \rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$
603 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.64423 (5)	0.88673 (4)	0.74002 (3)	0.03550 (16)
01	0.7838 (3)	1.0069 (2)	0.64852 (19)	0.0426 (8)
O2	0.8139 (3)	0.9051 (2)	0.77676 (18)	0.0405 (7)
O3	0.7914 (4)	1.2521 (3)	0.7375 (3)	0.0767 (12)
O4	0.7058 (4)	1.3718 (3)	0.6419 (3)	0.0865 (13)
H4B	0.6644	1.3840	0.6916	0.130*
N1	0.5364 (3)	0.8073 (2)	0.8672 (2)	0.0368 (9)
N2	0.5425 (3)	1.0045 (2)	0.8031 (2)	0.0355 (8)
N3	0.5155 (3)	0.9006 (2)	0.6470 (2)	0.0366 (9)
N4	0.7090 (3)	0.7673 (2)	0.6686 (2)	0.0369 (9)
C1	0.4516 (4)	0.8671 (3)	0.9161 (3)	0.0350 (10)
C2	0.4569 (4)	0.9721 (3)	0.8828 (3)	0.0339 (10)

C3	0.5528 (4)	1.1024 (3)	0.7720 (3)	0.0469 (12)
H3	0.6133	1.1252	0.7185	0.056*
C4	0.4759 (4)	1.1718 (3)	0.8172 (3)	0.0491 (12)
H4A	0.4836	1.2396	0.7930	0.059*
C5	0.3890 (4)	1.1393 (3)	0.8973 (3)	0.0483 (12)
Н5	0.3376	1.1850	0.9281	0.058*
C6	0.3773 (4)	1.0374 (3)	0.9329 (3)	0.0384 (11)
C7	0.2920 (4)	0.9964 (4)	1.0161 (3)	0.0522 (13)
H7	0.2391	1.0390	1.0499	0.063*
C8	0.2853 (4)	0.8969 (4)	1.0478 (3)	0.0514 (13)
H8A	0.2276	0.8727	1.1025	0.062*
C9	0.3653 (4)	0.8282 (3)	0.9989 (3)	0.0428 (11)
C10	0.3674 (5)	0.7248 (4)	1.0305 (3)	0.0557 (14)
H10	0.3105	0.6964	1.0841	0.067*
C11	0.4531 (5)	0.6656 (4)	0.9822 (3)	0.0609 (15)
H11	0.4568	0.5970	1.0035	0.073*
C12	0.5357 (5)	0.7098 (3)	0.9000 (3)	0.0501 (13)
H12	0.5927	0.6688	0.8670	0.060*
C13	0.5415 (4)	0.8322 (3)	0.5895 (3)	0.0365 (10)
C14	0.6448 (4)	0.7631 (3)	0.6003 (3)	0.0374 (11)
C15	0.8014 (5)	0.6997 (3)	0.6810 (3)	0.0495 (12)
H15	0.8443	0.7003	0.7285	0.059*
C16	0.8374 (5)	0.6272 (3)	0.6259 (4)	0.0617 (15)
H16	0.9042	0.5817	0.6360	0.074*
C17	0.7750 (5)	0.6236 (4)	0.5582 (4)	0.0600 (15)
H17	0.7984	0.5757	0.5213	0.072*
C18	0.6766 (5)	0.6907 (3)	0.5438 (3)	0.0482 (13)
C19	0.6023 (5)	0.6905 (4)	0.4744 (3)	0.0641 (16)
H19	0.6232	0.6450	0.4348	0.077*
C20	0.5024 (6)	0.7560 (4)	0.4665 (3)	0.0661 (16)
H20	0.4551	0.7532	0.4221	0.079*
C21	0.4670 (5)	0.8289 (4)	0.5235 (3)	0.0464 (12)
C22	0.3630 (5)	0.8974 (4)	0.5197 (3)	0.0579 (14)
H22	0.3120	0.8971	0.4771	0.070*
C23	0.3367 (5)	0.9635 (4)	0.5774 (3)	0.0518 (13)
H23	0.2673	1.0082	0.5757	0.062*
C24	0.4157 (4)	0.9631 (3)	0.6391 (3)	0.0451 (12)
H24	0.3976	1.0097	0.6777	0.054*
C25	0.8448 (4)	0.9804 (3)	0.7112 (3)	0.0355 (10)
C26	0.9559 (4)	1.0368 (3)	0.7160 (3)	0.0335 (10)
C27	1.0267 (5)	0.9982 (4)	0.7824 (3)	0.0525 (13)
H27	1.0055	0.9369	0.8210	0.063*
C28	1.1267 (5)	1.0449 (4)	0.7949 (4)	0.0639 (15)
H28	1.1724	1.0155	0.8403	0.077*
C29	1.1583 (5)	1.1361 (4)	0.7392 (4)	0.0597 (15)
H29	1.2254	1.1696	0.7464	0.072*
C30	1.0889 (5)	1.1765 (4)	0.6728 (3)	0.0545 (14)
H30	1.1105	1.2383	0.6355	0.065*
C31	0.9879 (4)	1.1300 (3)	0.6582 (3)	0.0382 (11)

C32	0.9304 (4)	1.1779 (3)	0.5740 (3)	0.0467 (12)
C33	0.9827 (5)	1.1414 (3)	0.4889 (3)	0.0505 (13)
H33	1.0407	1.0874	0.4896	0.061*
C34	0.9473 (5)	1.1854 (4)	0.4096 (4)	0.0703 (17)
H34	0.9760	1.1592	0.3558	0.084*
C35	0.8636 (5)	1.2748 (4)	0.4069 (4)	0.0711 (17)
H35	0.8431	1.3082	0.3507	0.085*
C36	0.8155 (5)	1.3089 (4)	0.4883 (3)	0.0525 (13)
H36	0.7614	1.3653	0.4875	0.063*
C37	0.8477 (5)	1.2592 (4)	0.5721 (3)	0.0515 (13)
C38	0.7835 (5)	1.2933 (4)	0.6589 (4)	0.0517 (13)
O5	0.5364 (3)	0.4416 (3)	0.7713 (2)	0.0637 (10)
O6	0.3732 (3)	0.3897 (2)	0.7279 (2)	0.0534 (9)
07	-0.0451 (4)	0.4415 (3)	0.7539 (3)	0.0927 (13)
08	0.1589 (4)	0.4398 (3)	0.6921 (2)	0.0643 (10)
H8B	0.2255	0.4224	0.7097	0.096*
C39	0.4238 (5)	0.4485 (3)	0.7635 (3)	0.0440 (12)
C40	0.3400 (4)	0.5330 (3)	0.7956 (3)	0.0378 (11)
C41	0.3802 (4)	0.6285 (3)	0.7610 (3)	0.0513 (13)
H41	0.4601	0.6381	0.7225	0.062*
C42	0.3053 (5)	0.7102 (3)	0.7819 (3)	0.0567 (14)
H42	0.3323	0.7743	0.7553	0.068*
C43	0.1916 (5)	0.6958 (3)	0.8416 (3)	0.0568 (14)
H43	0.1407	0.7501	0.8577	0.068*
C44	0.1511 (4)	0.5996 (3)	0.8790 (3)	0.0496 (13)
H44	0.0737	0.5904	0.9211	0.059*
C45	0.2223 (4)	0.5183 (3)	0.8554 (3)	0.0352 (10)
C46	0.1725 (4)	0.4179 (3)	0.8974 (3)	0.0373 (11)
C47	0.1929 (4)	0.3696 (3)	0.9849 (3)	0.0471 (12)
H47	0.2418	0.3994	1.0149	0.057*
C48	0.1422 (5)	0.2782 (4)	1.0288 (3)	0.0571 (14)
H48	0.1603	0.2451	1.0859	0.069*
C49	0.0635 (5)	0.2368 (4)	0.9855 (4)	0.0640 (16)
H49	0.0285	0.1757	1.0142	0.077*
C50	0.0370 (4)	0.2852 (3)	0.9012 (4)	0.0541 (14)
H50	-0.0188	0.2583	0.8746	0.065*
C51	0.0930 (4)	0.3744 (3)	0.8553 (3)	0.0431 (11)
C52	0.0630 (6)	0.4223 (4)	0.7638 (4)	0.0559 (13)
O9	0.7109 (4)	0.5128 (3)	0.8546 (3)	0.0742 (11)
H9A	0.652 (4)	0.497 (5)	0.830 (4)	0.111*
H9B	0.785 (3)	0.495 (5)	0.830 (4)	0.111*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0397 (3)	0.0354 (3)	0.0325 (3)	-0.0046 (2)	-0.0036 (2)	-0.0120 (2)
01	0.043 (2)	0.0487 (19)	0.0378 (18)	-0.0073 (15)	-0.0123 (15)	-0.0061 (15)
02	0.0471 (19)	0.0346 (17)	0.0341 (17)	-0.0083 (14)	-0.0023 (14)	0.0018 (14)

O3	0.098 (3)	0.065 (2)	0.056 (2)	0.011 (2)	0.004 (2)	-0.014 (2)
O4	0.099 (3)	0.088 (3)	0.070 (3)	0.031 (3)	-0.016 (2)	-0.026 (2)
N1	0.049 (2)	0.030 (2)	0.033 (2)	-0.0050 (17)	-0.0075 (17)	-0.0103 (16)
N2	0.039 (2)	0.033 (2)	0.036 (2)	-0.0035 (17)	-0.0071 (17)	-0.0091 (16)
N3	0.040 (2)	0.035 (2)	0.033 (2)	-0.0099 (18)	-0.0012 (17)	-0.0070 (16)
N4	0.041 (2)	0.034 (2)	0.032 (2)	-0.0026 (18)	-0.0001 (17)	-0.0033 (16)
C1	0.037 (3)	0.038 (3)	0.033 (2)	-0.005 (2)	-0.012 (2)	-0.006 (2)
C2	0.034 (3)	0.042 (3)	0.030 (2)	-0.004 (2)	-0.0107 (19)	-0.011 (2)
C3	0.057 (3)	0.037 (3)	0.044 (3)	-0.005 (2)	-0.007 (2)	-0.007 (2)
C4	0.055 (3)	0.031 (2)	0.064 (3)	0.004 (2)	-0.014 (3)	-0.015 (2)
C5	0.046 (3)	0.048 (3)	0.058 (3)	0.010 (2)	-0.013 (2)	-0.027 (3)
C6	0.036 (3)	0.046 (3)	0.036 (3)	0.000 (2)	-0.008 (2)	-0.016 (2)
C7	0.045 (3)	0.068 (4)	0.046 (3)	0.004 (3)	-0.002 (2)	-0.027 (3)
C8	0.048 (3)	0.072 (4)	0.029 (2)	0.003 (3)	0.005 (2)	-0.013 (2)
C9	0.043 (3)	0.052 (3)	0.033 (2)	-0.011 (2)	-0.002 (2)	-0.009 (2)
C10	0.066 (4)	0.053 (3)	0.039 (3)	-0.014 (3)	0.004 (2)	0.000 (2)
C11	0.082 (4)	0.040 (3)	0.050 (3)	-0.011 (3)	0.000 (3)	0.002 (2)
C12	0.060 (3)	0.042 (3)	0.046 (3)	-0.005 (3)	-0.009 (2)	-0.006 (2)
C13	0.043 (3)	0.035 (2)	0.029 (2)	-0.013 (2)	-0.002 (2)	-0.0024 (19)
C14	0.042 (3)	0.040 (3)	0.028 (2)	-0.013 (2)	0.003 (2)	-0.008 (2)
C15	0.057 (3)	0.048 (3)	0.037 (3)	0.004 (3)	-0.003 (2)	-0.003 (2)
C16	0.065 (4)	0.037 (3)	0.065 (4)	0.012 (3)	0.010 (3)	-0.003 (3)
C17	0.076 (4)	0.045 (3)	0.054 (3)	-0.009(3)	0.014 (3)	-0.024 (3)
C18	0.056 (3)	0.046 (3)	0.041 (3)	-0.014 (3)	0.008 (2)	-0.019 (2)
C19	0.080 (4)	0.077 (4)	0.041 (3)	-0.026 (3)	0.003 (3)	-0.031 (3)
C20	0.074 (4)	0.095 (5)	0.038 (3)	-0.028 (4)	-0.009(3)	-0.026 (3)
C21	0.053 (3)	0.055 (3)	0.031 (3)	-0.024 (3)	-0.009 (2)	0.001 (2)
C22	0.060 (4)	0.072 (4)	0.043 (3)	-0.030 (3)	-0.022 (3)	0.008 (3)
C23	0.049 (3)	0.053 (3)	0.052 (3)	-0.010 (3)	-0.016 (3)	0.002 (3)
C24	0.041 (3)	0.043 (3)	0.051 (3)	-0.007(2)	-0.008 (2)	-0.007 (2)
C25	0.031 (3)	0.039 (3)	0.039 (3)	0.006 (2)	-0.004(2)	-0.020(2)
C26	0.031 (3)	0.037(2)	0.033 (2)	0.004 (2)	-0.0042(19)	-0.012(2)
C27	0.054 (3)	0.055 (3)	0.047 (3)	-0.005(3)	-0.012(3)	-0.006(2)
C28	0.055 (4)	0.080 (4)	0.064 (4)	-0.013(3)	-0.026(3)	-0.015(3)
C29	0.038 (3)	0.084(4)	0.067 (4)	-0.015(3)	-0.006(3)	-0.035(3)
C30	0.050(3)	0.058(3)	0.059(3)	-0.016(3)	-0.003(3)	-0.021(3)
C31	0.030(3)	0.026(3)	0.038(2)	-0.004(2)	-0.002(2)	-0.017(2)
C32	0.032(3)	0.035(3)	0.050(2)	-0.013(2)	0.002(2)	-0.012(2)
C33	0.051(3)	0.039(3)	0.034(3)	-0.013(3)	0.005(2)	-0.002(2)
C34	0.056(4)	0.019(5)	0.051(3)	-0.003(3)	0.008(2)	-0.022(3)
C35	0.030(1)	0.090 (5)	0.051(1)	-0.019(4)	-0.013(3)	-0.022(3)
C36	0.074(4)	0.050(3)	0.030(3)	-0.014(3)	-0.009(2)	-0.003(2)
C37	0.037(3)	0.003(3)	0.057(3)	-0.018(3)	0.007(2)	-0.019(3)
C38	0.063(4)	0.053(3)	0.031(3)	-0.013(3)	0.007(2)	-0.019(3)
05	0.039(2)	0.052(3)	0.012(0)	0.0133 (19)	-0.0019(18)	-0.038(2)
06	0.055(2)	0.0467 (10)	0.070(2)	0.0005(17)	-0.0018(17)	-0.0241(16)
07	0.005(2)	0 101 (3)	0.000(2) 0.114(A)	0.0005(17)	-0.042(3)	-0.0241(10)
08	0.007(3)	0.101(3)	0.117(4)	-0.005(3)	-0.021(2)	-0.009(3)
C30	0.070(3)	0.075(3)	0.040(2)	0.003(2)	0.021(2)	-0.0099(10)
039	0.040(3)	0.044(3)	0.030 (3)	0.002 (2)	0.003 (2)	-0.009 (2)

C40	0.042 (3)	0.034 (2)	0.035 (2)	-0.003 (2)	0.001 (2)	-0.010 (2)
C41	0.047 (3)	0.048 (3)	0.052 (3)	-0.009 (3)	0.009 (2)	-0.011 (2)
C42	0.064 (4)	0.034 (3)	0.062 (3)	-0.010 (3)	0.008 (3)	-0.007 (2)
C43	0.058 (4)	0.034 (3)	0.072 (4)	0.005 (2)	0.006 (3)	-0.018 (2)
C44	0.045 (3)	0.039 (3)	0.053 (3)	0.001 (2)	0.015 (2)	-0.010 (2)
C45	0.033 (3)	0.034 (2)	0.038 (2)	-0.001 (2)	-0.002 (2)	-0.0104 (19)
C46	0.036 (3)	0.034 (2)	0.037 (3)	0.001 (2)	0.004 (2)	-0.008 (2)
C47	0.046 (3)	0.048 (3)	0.040 (3)	0.004 (2)	0.005 (2)	-0.009 (2)
C48	0.058 (4)	0.054 (3)	0.044 (3)	0.012 (3)	0.012 (3)	-0.004 (3)
C49	0.071 (4)	0.035 (3)	0.065 (4)	-0.001 (3)	0.025 (3)	-0.002 (3)
C50	0.048 (3)	0.039 (3)	0.073 (4)	-0.010 (2)	0.002 (3)	-0.018 (3)
C51	0.044 (3)	0.032 (2)	0.049 (3)	-0.002 (2)	0.000 (2)	-0.009 (2)
C52	0.060 (4)	0.045 (3)	0.066 (4)	0.002 (3)	-0.023 (3)	-0.010 (3)
09	0.089 (3)	0.065 (3)	0.071 (3)	-0.009(3)	-0.008(2)	-0.024 (2)

Geometric parameters (Å, °)

Zn1—O2	2.078 (3)	C23—C24	1.387 (6)
Zn1—N1	2.128 (3)	С23—Н23	0.93
Zn1—N4	2.130 (3)	C24—H24	0.93
Zn1—N3	2.145 (4)	C25—C26	1.507 (5)
Zn1—N2	2.145 (3)	C26—C27	1.375 (6)
Zn1—O1	2.334 (3)	C26—C31	1.409 (6)
Zn1—C25	2.528 (4)	C27—C28	1.371 (6)
O1—C25	1.237 (5)	С27—Н27	0.93
O2—C25	1.276 (5)	C28—C29	1.374 (7)
O3—C38	1.207 (5)	C28—H28	0.93
O4—C38	1.326 (6)	C29—C30	1.370 (6)
O4—H4B	0.82	С29—Н29	0.93
N1—C12	1.327 (5)	C30—C31	1.391 (6)
N1—C1	1.370 (5)	С30—Н30	0.93
N2—C3	1.333 (5)	C31—C32	1.525 (6)
N2—C2	1.355 (5)	C32—C37	1.369 (6)
N3—C24	1.331 (5)	C32—C33	1.446 (6)
N3—C13	1.373 (5)	C33—C34	1.331 (6)
N4—C15	1.321 (5)	С33—Н33	0.93
N4—C14	1.366 (5)	C34—C35	1.462 (7)
C1—C9	1.409 (5)	С34—Н34	0.93
C1—C2	1.426 (5)	C35—C36	1.374 (6)
C2—C6	1.405 (5)	С35—Н35	0.93
C3—C4	1.394 (6)	C36—C37	1.394 (6)
С3—Н3	0.93	С36—Н36	0.93
C4—C5	1.366 (6)	C37—C38	1.478 (6)
C4—H4A	0.93	O5—C39	1.243 (5)
C5—C6	1.394 (6)	O6—C39	1.274 (5)
С5—Н5	0.93	O7—C52	1.211 (6)
C6—C7	1.415 (5)	O8—C52	1.314 (6)
С7—С8	1.353 (6)	O8—H8B	0.82
С7—Н7	0.93	C39—C40	1.503 (6)

C8—C9	1.430 (6)	C40—C41	1.376 (6)
C8—H8A	0.93	C40—C45	1.389 (5)
C9—C10	1.400 (6)	C41—C42	1.377 (6)
C10-C11	1.365 (6)	C41—H41	0.93
C10—H10	0.93	C42—C43	1.353 (6)
C11—C12	1.403 (6)	C42—H42	0.93
C11—H11	0.93	C43—C44	1.390 (6)
C12—H12	0.93	C43—H43	0.93
C13—C21	1.414 (6)	C44—C45	1.365 (5)
C13—C14	1.418 (6)	C44—H44	0.93
C14—C18	1.410 (6)	C45—C46	1.484 (5)
C15—C16	1.401 (6)	C46—C47	1.390 (6)
C15—H15	0.93	C46—C51	1.407 (6)
C16—C17	1.343 (7)	C47—C48	1.387 (6)
C16—H16	0.93	C47—H47	0.93
C17—C18	1.370 (7)	C48—C49	1.395 (7)
C17—H17	0.93	C48—H48	0.93
C18—C19	1.444 (7)	C49—C50	1.371 (7)
C19—C20	1.356 (7)	C49—H49	0.93
C19—H19	0.93	C50—C51	1.389 (6)
C20—C21	1.423 (6)	С50—Н50	0.93
C20—H20	0.93	C51—C52	1.477 (6)
C21—C22	1.406 (7)	О9—Н9А	0.87 (5)
C22—C23	1.351 (6)	О9—Н9В	0.84 (2)
C22—H22	0.93		
O2—Zn1—N1	102.73 (12)	C23—C22—C21	120.6 (5)
O2—Zn1—N4	97.11 (12)	С23—С22—Н22	119.7
N1—Zn1—N4	100.12 (12)	C21—C22—H22	119.7
O2—Zn1—N3	155.43 (11)	C22—C23—C24	118.4 (5)
N1—Zn1—N3	101.83 (13)	С22—С23—Н23	120.8
N4—Zn1—N3	77.99 (14)	С24—С23—Н23	120.8
O2—Zn1—N2	94.88 (12)	N3—C24—C23	124.5 (4)
N1—Zn1—N2	77.67 (12)	N3—C24—H24	117.8
N4—Zn1—N2	167.99 (13)	C23—C24—H24	117.8
N3—Zn1—N2	90.84 (13)	O1—C25—O2	121.2 (4)
O2—Zn1—O1	59.17 (10)	O1—C25—C26	122.0 (4)
N1—Zn1—O1	155.22 (11)	O2—C25—C26	116.7 (4)
N4—Zn1—O1	98.98 (11)	O1—C25—Zn1	66.7 (2)
N3—Zn1—O1	97.46 (11)	O2—C25—Zn1	55.0 (2)
N2—Zn1—O1	86.71 (11)	C26—C25—Zn1	167.7 (3)
O2—Zn1—C25	30.21 (12)	C27—C26—C31	117.9 (4)
N1—Zn1—C25	129.98 (14)	C27—C26—C25	119.0 (4)
N4—Zn1—C25	101.56 (13)	C31—C26—C25	123.1 (4)
N3—Zn1—C25	126.52 (13)	C28—C27—C26	123.7 (5)
N2—Zn1—C25	88.57 (12)	С28—С27—Н27	118.1
O1—Zn1—C25	29.12 (11)	С26—С27—Н27	118.1
C25—O1—Zn1	84.2 (2)	C27—C28—C29	118.9 (5)
C25—O2—Zn1	94.8 (3)	С27—С28—Н28	120.6
C38—O4—H4B	109.5	C29—C28—H28	120.6

C12—N1—C1	118.0 (4)	C30—C29—C28	118.6 (5)
C12—N1—Zn1	128.5 (3)	С30—С29—Н29	120.7
C1—N1—Zn1	113.3 (3)	С28—С29—Н29	120.7
C3—N2—C2	118.5 (4)	C29—C30—C31	123.6 (5)
C3—N2—Zn1	127.8 (3)	С29—С30—Н30	118.2
C2—N2—Zn1	113.7 (3)	С31—С30—Н30	118.2
C24—N3—C13	117.3 (4)	C30—C31—C26	117.4 (4)
C24—N3—Zn1	129.6 (3)	C30—C31—C32	117.4 (4)
C13—N3—Zn1	113.1 (3)	C26—C31—C32	124.8 (4)
C15—N4—C14	117.6 (4)	C37—C32—C33	120.0 (5)
C15—N4—Zn1	129.0 (3)	C37—C32—C31	124.1 (4)
C14—N4—Zn1	113.5 (3)	C33—C32—C31	115.4 (4)
N1—C1—C9	122.2 (4)	C34—C33—C32	119.6 (5)
N1—C1—C2	117.6 (4)	С34—С33—Н33	120.2
C9—C1—C2	120.1 (4)	С32—С33—Н33	120.2
N2—C2—C6	122.6 (4)	C33—C34—C35	120.2 (5)
N2—C2—C1	117.1 (4)	С33—С34—Н34	119.9
C6—C2—C1	120.3 (4)	С35—С34—Н34	119.9
N2—C3—C4	122.2 (4)	C36—C35—C34	119.2 (5)
N2—C3—H3	118.9	С36—С35—Н35	120.4
С4—С3—Н3	118.9	С34—С35—Н35	120.4
C5—C4—C3	119.4 (4)	C35—C36—C37	120.2 (5)
C5—C4—H4A	120.3	С35—С36—Н36	119.9
C3—C4—H4A	120.3	С37—С36—Н36	119.9
C4—C5—C6	120.0 (4)	C32—C37—C36	120.7 (4)
С4—С5—Н5	120.0	C32—C37—C38	121.5 (5)
С6—С5—Н5	120.0	C36—C37—C38	117.7 (5)
C5—C6—C2	117.3 (4)	O3—C38—O4	122.4 (5)
C5—C6—C7	124.3 (4)	O3—C38—C37	125.5 (5)
C2—C6—C7	118.4 (4)	O4—C38—C37	111.9 (5)
C8—C7—C6	121.8 (4)	С52—О8—Н8В	109.5
С8—С7—Н7	119.1	O5—C39—O6	124.5 (4)
С6—С7—Н7	119.1	O5—C39—C40	119.0 (4)
С7—С8—С9	121.3 (4)	O6—C39—C40	116.4 (4)
С7—С8—Н8А	119.3	C41—C40—C45	119.1 (4)
С9—С8—Н8А	119.3	C41—C40—C39	118.3 (4)
C10—C9—C1	117.8 (4)	C45—C40—C39	122.5 (4)
C10—C9—C8	124.1 (4)	C40—C41—C42	121.8 (4)
C1—C9—C8	118.0 (4)	C40—C41—H41	119.1
C11—C10—C9	119.8 (4)	C42—C41—H41	119.1
C11—C10—H10	120.1	C43—C42—C41	118.9 (4)
C9—C10—H10	120.1	C43—C42—H42	120.5
C10—C11—C12	119.1 (5)	C41—C42—H42	120.5
C10—C11—H11	120.5	C42—C43—C44	119.9 (4)
C12—C11—H11	120.5	C42—C43—H43	120.0
N1-C12-C11	123.1 (4)	C44—C43—H43	120.0
N1—C12—H12	118.5	C45—C44—C43	121.5 (4)
C11—C12—H12	118.5	C45—C44—H44	119.2
N3—C13—C21	121.7 (4)	C43—C44—H44	119.2

N3—C13—C14	117.4 (4)	C44—C45—C40	118.6 (4)
C21—C13—C14	120.9 (4)	C44—C45—C46	118.6 (4)
N4	121.7 (4)	C40—C45—C46	122.8 (4)
N4—C14—C13	117.9 (4)	C47—C46—C51	118.4 (4)
C18—C14—C13	120.4 (4)	C47—C46—C45	119.9 (4)
N4—C15—C16	122.8 (5)	C51—C46—C45	121.3 (4)
N4—C15—H15	118.6	C48—C47—C46	121.7 (5)
C16—C15—H15	118.6	C48—C47—H47	119.2
C17—C16—C15	119.6 (5)	C46—C47—H47	119.2
С17—С16—Н16	120.2	C47—C48—C49	118.6 (5)
C15—C16—H16	120.2	C47—C48—H48	120.7
C16—C17—C18	119.9 (5)	C49—C48—H48	120.7
С16—С17—Н17	120.1	C50—C49—C48	120.8 (5)
C18—C17—H17	120.1	С50—С49—Н49	119.6
C17—C18—C14	118.5 (5)	C48—C49—H49	119.6
C17—C18—C19	123.5 (5)	C49—C50—C51	120.3 (5)
C14—C18—C19	118.0 (5)	С49—С50—Н50	119.8
C20-C19-C18	120.6 (5)	С51—С50—Н50	119.8
С20—С19—Н19	119.7	C50—C51—C46	120.0 (5)
C18—C19—H19	119.7	C50—C51—C52	118.0 (5)
C19—C20—C21	122.5 (5)	C46—C51—C52	121.9 (4)
C19—C20—H20	118.7	O7—C52—O8	121.0 (5)
C21—C20—H20	118.7	O7—C52—C51	121.9 (5)
C22—C21—C13	117.5 (4)	O8—C52—C51	117.0 (5)
C22—C21—C20	125.0 (5)	Н9А—О9—Н9В	115 (6)
C13—C21—C20	117.5 (5)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O9—H9B···O7 ⁱ	0.84 (4)	2.10 (5)	2.936 (6)	171 (6)
O4—H4B···O5 ⁱⁱ	0.82	1.86	2.633 (5)	158
O9—H9A…O5	0.87 (5)	1.96 (6)	2.817 (6)	171 (7)
O8—H8B…O6	0.82	1.69	2.500 (5)	171
С3—Н3…О1	0.93	2.55	3.130 (5)	121
C4—H4A···O6 ⁱⁱ	0.93	2.42	3.221 (5)	144
С12—Н12…О9	0.93	2.42	3.273 (6)	152
C16—H16···O7 ⁱ	0.93	2.43	3.199 (7)	139
C19—H19…O6 ⁱⁱⁱ	0.93	2.56	3.377 (5)	146
C22—H22···O1 ^{iv}	0.93	2.43	3.249 (6)	147

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+2, -*z*+1.

Fig. 2

